136 research outputs found

    Two stages of parafoveal processing during reading: Evidence from a display change detection task

    Get PDF
    We used a display change detection paradigm (Slattery, Angele, & Rayner Human Perception and Performance, 37, 1924–1938 2011) to investigate whether display change detection uses orthographic regularity and whether detection is affected by the processing difficulty of the word preceding the boundary that triggers the display change. Subjects were significantly more sensitive to display changes when the change was from a nonwordlike preview than when the change was from a wordlike preview, but the preview benefit effect on the target word was not affected by whether the preview was wordlike or nonwordlike. Additionally, we did not find any influence of preboundary word frequency on display change detection performance. Our results suggest that display change detection and lexical processing do not use the same cognitive mechanisms. We propose that parafoveal processing takes place in two stages: an early, orthography-based, preattentional stage, and a late, attention-dependent lexical access stage

    Reading sentences of uniform word length II: very rapid adaptation of the preferred saccade length

    Get PDF
    In the current study we investigated whether readers adjust their preferred saccade length (PSL) during reading on a trial-by-trial basis. The PSL refers to the distance between a saccade launch site and saccade target (i.e., the word center during reading) when participants neither undershoot nor overshoot this target (McConkie, Kerr, Reddix, & Zola, 1988). The tendency for saccades longer or shorter than the PSL to under or overshoot their target is referred to as the range error. Recent research by Cutter, Drieghe, and Liversedge (2017) has shown that the PSL changes to be shorter when readers are presented with thirty consecutive sentences exclusively made of three letter words, and longer when presented with thirty consecutive sentences exclusively made of five letter words. We replicated and extended this work by this time presenting participants with these uniform sentences in an unblocked design. We found that adaptation still occurred across different sentence types despite participants only having one trial to adapt. Our analyses suggested that this effect was driven by the length of the words readers were making saccades away from, rather than the length of the words in the rest of the sentence. We propose an account of the range error in which readers use parafoveal word length information to estimate the length of a saccade between the centre of two parafoveal words (termed the Centre-Based Saccade Length) prior to landing on the first of these words

    Self-Consistent Estimation of Mislocated Fixations during Reading

    Get PDF
    During reading, we generate saccadic eye movements to move words into the center of the visual field for word processing. However, due to systematic and random errors in the oculomotor system, distributions of within-word landing positions are rather broad and show overlapping tails, which suggests that a fraction of fixations is mislocated and falls on words to the left or right of the selected target word. Here we propose a new procedure for the self-consistent estimation of the likelihood of mislocated fixations in normal reading. Our approach is based on iterative computation of the proportions of several types of oculomotor errors, the underlying probabilities for word-targeting, and corrected distributions of landing positions. We found that the average fraction of mislocated fixations ranges from about 10% to more than 30% depending on word length. These results show that fixation probabilities are strongly affected by oculomotor errors

    Is preview benefit from word n + 2 a common effect in reading Chinese? Evidence from eye movements

    Get PDF
    Although most studies of reading English (and other alphabetic languages) have indicated that readers do not obtain preview benefit from word n + 2, Yang, Wang, Xu, and Rayner (2009) reported evidence that Chinese readers obtain preview benefit from word n + 2. However, this effect may not be common in Chinese because the character prior to the target word in Yang et al.’s experiment was always a very high frequency function word. In the current experiment, we utilized a relatively low frequency word n + 1 to examine whether an n + 2 preview benefit effect would still exist and failed to find any preview benefit from word n + 2. These results are consistent with a recent study which indicated that foveal load modulates the perceptual span during Chinese reading (Yan, Kliegl, Shu, Pan, & Zhou, 2010). Implications of these results for models of eye movement control are discussed

    The programming of sequences of saccades

    Get PDF
    Saccadic eye movements move the high-resolution fovea to point at regions of interest. Saccades can only be generated serially (i.e., one at a time). However, what remains unclear is the extent to which saccades are programmed in parallel (i.e., a series of such moments can be planned together) and how far ahead such planning occurs. In the current experiment, we investigate this issue with a saccade contingent preview paradigm. Participants were asked to execute saccadic eye movements in response to seven small circles presented on a screen. The extent to which participants were given prior information about target locations was varied on a trial-by-trial basis: participants were aware of the location of the next target only, the next three, five, or all seven targets. The addition of new targets to the display was made during the saccade to the next target in the sequence. The overall time taken to complete the sequence was decreased as more targets were available up to all seven targets. This was a result of a reduction in the number of saccades being executed and a reduction in their saccade latencies. Surprisingly, these results suggest that, when faced with a demand to saccade to a large number of target locations, saccade preparation about all target locations is carried out in paralle
    corecore